Statistical Aspects in Neural Network for the Purpose of Prognostics
نویسندگان
چکیده
Neural network (NN) is a representative data-driven method, which is one of prognostics approaches that is to predict future damage/degradation and the remaining useful life of in-service systems based on the damage data measured at previous usage conditions. Even though NN has a wide range of applications, there are a relatively small number of literature on prognostics compared to the usage in other fields such as diagnostics and pattern recognition. Especially, it is difficult to find studies on statistical aspects of NN for the purpose of prognostics. Therefore, this paper presents the aspects of statistical characteristics of NN that are presumable in practical usages, which arise from measurement data, weight parameters related to the neural network model, and loading conditions. The Bayesian framework and Johnson distribution are employed to handle uncertainties, and crack growth problem is addressed as an example.
منابع مشابه
Providing a Model for Detecting Tax Fraud Based on the Personality Types of Corporate Financial Managers using the Neural Network Approach
One of the management measures to reduce tax liabilities is non-payment of taxes through tax fraud. Because personality factors may play a role in explaining tax ethics, examining personality traits and aspects of tax fraud can help to better understand the factors that influence tax decisions. The main purpose of this study is to provide a model for detecting tax fraud based on the personality...
متن کاملPattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملForecasting Job Burnout among University Faculty Members of Yazd Payame Noor University Using Artificial Neural Network Technique
Background: Faculty members are one of the main factors in the higher education system, that high level of occupational stress caused by educational, research, and executive duties makes them exposed to burnout. The purpose of this study is Forecasting burnout of faculty members of Yazd Payame Noor University using artificial neural network technique. Methods: The present research is descripti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014